Affine opers and conformal affine Toda

نویسندگان

چکیده

For $\mathfrak g$ a Kac-Moody algebra of affine type, we show that there is an $\text{Aut}\, \mathcal O$-equivariant identification between $\text{Fun}\,\text{Op}_{\mathfrak g}(D)$, the functions on space ${\mathfrak g}$-opers disc, and $W\subset \pi_0$, intersection kernels screenings inside vacuum Fock module $\pi_0$. This kernel $W$ generated by two states: conformal vector, state $\delta_{-1}\left|0\right>$. We latter endows $\pi_0$ with canonical notion translation $T^{\text{(aff)}}$, use it to define densities in integrals motion classical Conformal Affine Toda field theory. The $\text{Aut}\,\mathcal O$-action defines bundle $\Pi$ over $\mathbb P^1$ fibre product bundles $\Pi \otimes \Omega^j$, where $\Omega^j$ are tensor powers bundle, come endowed one-parameter family holomorphic connections, $\nabla^{\text{(aff)}} - \alpha T^{\text{(aff)}}$, $\alpha\in \mathbb C$. global sections $[\mathbf v_j dt^{j+1} ] \in H^1(\mathbb P^1, \Pi\otimes \Omega^j,\nabla^{\text{(aff)}})$ de Rham cohomology $\nabla^{\mathrm{(aff)}}$. Any choice g}$-Miura oper $\chi$ gives connection $\nabla^{\mathrm{(aff)}}_\chi$ $\Omega^j$. Using coinvariants, map $\mathsf F_\chi$ from \Omega^j$ F_\chi \nabla^{\text{(aff)}} = \nabla^{\text{(aff)}}_\chi \mathsf F_\chi$, so descends well-defined cohomologies. Under this map, classes ]$ sent $H^1(\mathbb \Omega^j,\nabla^{\text{(aff)}}_\chi)$ defined g}$-oper underlying $\chi$.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Solutions of Affine and Conformal Affine Toda Field Theories

We give new formulations of the solutions of the field equations of the affine Toda and conformal affine Toda theories on a cylinder and two-dimensional Minkowski space-time. These solutions are parameterised in terms of initial data and the resulting covariant phase spaces are diffeomorphic to the Hamiltonian ones. We derive the fundamental Poisson brackets of the parameters of the solutions a...

متن کامل

Affine Toda-Sutherland Systems

A cross between two well-known integrable multi-particle dynamics, an affine Toda molecule and a Sutherland system, is introduced for any affine root system. Though it is not completely integrable but partially integrable, or quasi exactly solvable, it inherits many remarkable properties from the parents. The equilibrium position is algebraic, i.e. proportional to the Weyl vector. The frequenci...

متن کامل

Affine Toda Field Theory

We present one loop boundary reflection matrix for d (1) 4 Toda field theory defined on a half line with the Neumann boundary condition. This result demonstrates a nontrivial cancellation of non-meromorphic terms which are present when the model has a particle spectrum with more than one mass. Using this result, we determine uniquely the exact boundary reflection matrix which turns out to be ‘n...

متن کامل

Quantum affine Toda solitons

We review some of the progress in affine Toda field theories in recent years, explain why known dualities cannot easily be extended, and make some suggestions for what should be sought instead.

متن کامل

Toda Theories as Contractions of Affine Toda Theories

Using a contraction procedure, we obtain Toda theories and their structures, from affine Toda theories and their corresponding structures. By structures, we mean the equation of motion, the classical Lax pair, the boundary term for half line theories, and the quantum transfer matrix. The Lax pair and the transfer matrix so obtained, depend nontrivially on the spectral parameter. A Toda field th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 2021

ISSN: ['1469-7750', '0024-6107']

DOI: https://doi.org/10.1112/jlms.12494